Search results for "pixel [detector]"
showing 10 items of 49 documents
Spectrodirectional Minnaert-kretrieval using CHRIS-PROBA data
2010
We report on a detailed analysis of hyperspectral and multidirectional remote sensing data acquired using the Compact High Resolution Imaging Spectrometer (CHRIS) mounted onboard the Project for On-Board Autonomy (PROBA) spacecraft. This instrument is capable of sampling reflected radiation over the visible and near-infrared (NIR) region of the solar spectrum at a spatial resolution (approx. 17 m) intermediary between sensors traditionally used in land applications (such as Landsat and Satellite Pour l’Observation de la Terre (SPOT), 30 m–50 m) and the latest instruments delivering a nominal resolution of 1 m or less. The spectral anisotropic signature of an Alpine coniferous forest during …
Room-temperature performance of 3 mm-thick cadmium-zinc-telluride pixel detectors with sub-millimetre pixelization.
2020
Cadmium–zinc–telluride (CZT) pixel detectors represent a consolidated choice for the development of room-temperature spectroscopic X-ray imagers, finding important applications in medical imaging, often as detection modules of a variety of new SPECT and CT systems. Detectors with 3–5 mm thicknesses are able to efficiently detect X-rays up to 140 keV giving reasonable room-temperature energy resolution. In this work, the room-temperature performance of 3 mm-thick CZT pixel detectors, recently developed at IMEM/CNR of Parma (Italy), is presented. Sub-millimetre detector arrays with pixel pitch less than 500 µm were fabricated. The detectors are characterized by good room-temperature performan…
Technical design of the phase I Mu3e experiment
2021
Nuclear instruments & methods in physics research / A 1014, 165679 (2021). doi:10.1016/j.nima.2021.165679
Room-Temperature X-ray response of cadmium-zinc-Telluride pixel detectors grown by the vertical Bridgman technique
2020
In this work, the spectroscopic performances of new cadmium–zinc–telluride (CZT) pixel detectors recently developed at IMEM-CNR of Parma (Italy) are presented. Sub-millimetre arrays with pixel pitch less than 500 µm, based on boron oxide encapsulated vertical Bridgman grown CZT crystals, were fabricated. Excellent room-temperature performance characterizes the detectors even at high-bias-voltage operation (9000 V cm−1), with energy resolutions (FWHM) of 4% (0.9 keV), 1.7% (1 keV) and 1.3% (1.6 keV) at 22.1, 59.5 and 122.1 keV, respectively. Charge-sharing investigations were performed with both uncollimated and collimated synchrotron X-ray beams with particular attention to the mitigation o…
The Belle II vertex detector integration
2019
Belle II DEPFET, PXD, and SVD Collaborations: et al.
Studies for low mass, large area monolithic silicon pixel detector modules using the MALTA CMOS pixel chip
2021
Abstract The MALTA monolithic silicon pixel sensors have been used to study dicing and thinning of monolithic silicon pixel detectors for large area and low mass modules. Dicing as close as possible to the active circuitry will allow to build modules with very narrow inactive regions between the sensors. Inactive edge regions of less than 5 μ m to the electronic circuitry could be achieved for 100 μ m thick sensors. The MALTA chip (Cardella et al., 2019) also offers the possibility to transfer data and power directly from chip to chip. Tests have been carried out connecting two MALTA chips directly using ultrasonic wedge wire bonding. Results from lab tests show that the data accumulated in…
Compressive holography with a single-pixel detector.
2013
This Letter develops a framework for digital holography at optical wavelengths by merging phase-shifting interferometry with single-pixel optical imaging based on compressive sensing. The field diffracted by an input object is sampled by Hadamard patterns with a liquid crystal spatial light modulator. The concept of a single-pixel camera is then adapted to perform interferometric imaging of the sampled diffraction pattern by using a Mach-Zehnder interferometer. Phase-shifting techniques together with the application of a backward light propagation algorithm allow the complex amplitude of the object under scrutiny to be resolved. A proof-of-concept experiment evaluating the phase distributio…
The DEPFET pixel detector for the Belle II experiment at Super KEKB
2014
A pixel detector built with the DEPFET technology will be used for the two innermost layers of the Belle II experiment at the e + e SuperKEKB collider at KEK. The physics goals of the experiment impose challenging requirements to the design of the pixel detector in terms of performance, material budget and power consumption. The DEPFET technology has proven to be a suitable solution for the Belle II requirements and has been chosen as the baseline for the detector. This paper reviews the DEPFET pixel detector for Belle II and the various system aspects that have driven its final design.
Pattern projection for subpixel resolved imaging in microscopy.
2006
In this paper, we present a new approach providing super resolved images exceeding the geometrical limitation given by the detector pixel size of the imaging camera. The concept involves the projection of periodic patterns on top of the sample, which are then investigated under a microscope. Combining spatial scanning together with proper digital post-processing algorithm yields the improved geometrical resolution enhancement. This new method is especially interesting for microscopic imaging when the resolution of the detector is lower than the resolution due to diffraction.
Belle II pixel detector: Performance of final DEPFET modules
2020
Belle-II DEPFET and PXD Collaboration: et al.